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Snapchat

Snapchat is a new kind of camera
used by millions of people every day
to stay in touch with friends, express
themselves, explore the world — and

take some pictures, too.

319 million

Our Brands

Spectacles

Spectacles are sunglasses that
capture your world, the way you see
it — and empower you to share your
perspective with the world in a whole

new way.

Why Snap?

Over 6 billion

~»

Bitmoji
Bitmoji is the digital you — a living
cartoon character to instantly

express who you are and how you're
feeling, in the moment.

Over 200 million

DAUs engage with augmented reality
every day on average.'

daily active users (DAUSs) use AR Lens plays per day on average.!

Snapchat every day on average.

Over 75%
of the 13-34 year olds in the US, UK,

Over 2.5 million

Lenses made by our community.2

Over 250,000

Lens creators have used Lens
Studio.? Australia, France, and Netherlands
use Snapchat.!




MAP

5,
s Patrick & Alex 3m |

A
5 3
%

/ @
Santa Monica % ’ i ,%—c

Evan im 1~

SHRTE Monica

P micn s ""“" al Mun’mpal Airport

w\n«

3
Q@‘&p

o

VENICE

ol
Y.
7 % Bwd

Abp,

The Snapchat Experience

COMMUNICATIONS

Q Chat 2 &

k8

—\ maggienel
@ View Snap 178 &

-, soccer squad
>

fried chicken friday
Q

jackcatz
>

matteo.rom o
&
0 A4

donny.vin
(m] 95 &

sofia7899

frankie6895
h 834

(m]

brunch crew 2/
O

brian.barr
Q

GO b c

Five core platforms

CAMERA

STORIES SPOTLIGHT

Q Q Stories +Q e Spotlight

Friends

P&w

SheilaP.  AshleyA.  Tim

e THRIILST

P

Subscriptions

Schizophrenia
Didn't Stop His
Dreams

This Puppy You're About

Sounds Like A
Pterodactyl

to Be Glued to
Your Screen

Discover

]
- REFINERYZS

HAIR ME OUT
Farf ori{amEn

i ‘ “
o R K
» I

Reported sightings || | Got My Hair
of Spider-Man in Done By
) (o Rihanna's Stylist

#almostpro #whattheflip

©®

February 2022 Investor Presentation (investor.snap.com)



Graphs are everywhere at Snap
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Graph Neural Networks




Graph Neural Networks

o Key idea: stack message passing layers to learn node and /
or graph embeddings

Hidden layer Hidden layer
(Message passing) (Message passing)

Node
Embeddings

Output

[TIT1

RelLU

=)

o




Graph Neural Network (1 layer)

e (t-th) Message Passing Layer

h®) = AGG® (hgf—U, {Msc;(”(hgf—l))m c N(v)})

| J | ] | J
Pooling Node emb. Neighbor embs.




Relations to other approaches

Input Layer
Hidden Layer ‘
Output Layer
Tabular ML context Graph ML context

Multi-layer perceptrons
(tabular machine learning)



Relations to other approaches

1({o|1]of1]o0 1(0(1 11213 31
ol1|1]o |11 o[1|1|*k|[4|5|6|—p
1{ofl1]o]|1]o0 101 71819

1|]0f1|1|1]o0 Image patch Kernel

ol1l1lol 11 (Local receptive field) (filter) Output
I Il L Convolutional neural networks

(computer vision)

Translation?

Sentiment?
' ‘ IE:> Next word?
“ Part-of-speech tags?

Transformers
(natural language processing)




Challenges in scaling GNNs

 Storing very large graphs is non-trivial
* Models are slow to train due to data dependency

e Realtime inference is slower than traditional models

10
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Graph Condensation for GNNs

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah

ICLR 2022

Followup: Condensing Graphs via One-Step Gradient Descent (Jin et al, KDD'22)

Thursaday, August 18, 10:00 AM-12:00 PM, Room 206, (Graph Mining)



Challenges in scaling GNNs

 Storing very large graphs is non-trivial

* Models are slow to train due to data dependency

ICan we significantly speed up GNN training by making |
l 'large graph data smaller? |



Our problem: Graph Condensation

Given graph 77 = (A,X,Y), we aim to learn a graph § =
(A', X', Y") with fewer nodes such that a GNN trained on § can
achieve comparable performance to one trained on T.

min £ (GNN, (A, X),Y)
| J

Minimize loss on original graph

st Os = argmin L(GNNg(A',X'),Y")
—J 6

via learned parameters on condensed graph

13



Our problem: Graph Condensation

Given graph 77 = (A,X,Y), we aim to learn a graph § =
(A', X', Y") with fewer nodes such that a GNN trained on § can
achieve comparable performance to one trained on T.

APPNP: 87.8%
GraphSAGE: 89.1%

APPNP: 94.3%
GraphSAGE: 93.0% ,

I

I
Test accuracies I Test accuracies
GCN: 93.9% I Condense GCN: 89.4%
SGC: 93.5% : SGC: 89.6%

[

153,932 training nodes 154 training nodes

14



Proposal: Graph Condensation via

Gradient Matching
+ Directly optimizing the bi-level problem is hard!

+ Instead, try to learn §, such that 9° ~ 7
ming [ Z:01 D (Of, HZ- )} with

07,1 = opty (c (GNNef (A',X'),Y'))l and 6/, = opty (c (GNN(,Z(A, X),Y))

Params from condensed graph ” Params from original graph

- We convert the problem to matching gradients!'l:

i D (VoL (GNNg, (A, X'),Y'), VoL (GNNp, (A, X), Y))]

min
S L ] 1

Gradients from condensed graph  Gradients from original graph

[1] Dataset Condensation with Gradient Matching (Zhao et al, 2021) B



Proposal: Graph Condensation via
Gradient Matching

GNN
. VoL(GNNy, (A, X),Y)

_______________________________________________________________________________________________________

_______________________________________________________________________________________________________

GNN, FA T T NA
VoL(GNNpg, (A X ). Y)

e e s o e
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Training with condensed graphs is comparable
to training on their original counterparts.

Baselines Proposed  _ _ _ _ _ _
” N
Dataset Rati Random Herding K-Center Coarsening DC-Graph GCOND-X [/ GCOND Whole 1\
ataset  Ratio(r) (A7 x7y (A’ X') (A, X) (A, X) (X)) (X') 1 (A,X') Dataset |
0.9% 54.4+4.4 57.1+1.5 52.4+2.8 52.24+0.4 66.8+1.5 71.4+0.8 : 70.5+1.2 :
Citeseer 1.8% 64.2+1.7 66.7+1.0 64.3+1.0 59.0+0.5 66.9+0.9 69.8+1.1 I70.6:|:0.9 71.7:|:0.1I
3.6% 69.1+0.1 69.0+0.1 69.14+0.1 65.3+0.5 66.3+1.5 69.441.4 I69.8:]:1.4 :
1.3% 63.6+3.7 67.0+1.3 64.0+2.3 31.24+0.2 67.3+1.9 75.94+1.2 179.84+1.3 |
Cora 2.6% 72.84+1.1 73.4+1.0 73.2+1.2 65.24+0.6 67.6+3.5 75.7+0.9 180.1+0.6 81.240.2]
5.2% 76.8+0.1 76.8+0.1 76.7+0.1 70.6+0.1 67.7+2.2 76.01+0.9 179.3+0.3 I
0.05% 47.1+3.9 52.44+1.8 47.24+3.0 35.44+0.3 58.6+0.4 61.3+0.5 : 59.2+1.1 :
Ogbn-arxiv 0.25% 57.3+1.1 58.6+1.2 56.84+0.8 43.5+0.2 59.94+0.3 64.2+0.4 I63.2i0.3 71.440.1
0.5% 60.0+0.9 60.44+0.8 60.3+0.4 50.44+0.1 59.54+0.3 63.1+0.5 I64.0:I:O.4 :
0.1% 41.84+2.0 42.5+1.8 42.04+0.7 41.94+0.2 46.3+0.2 45.94+0.1 146.5+0.4 |
Flickr 0.5% 44.0+0.4 43.9+0.9 43.24+0.1 44.54+0.1 45.94+0.1 45.04+0.2 147.14+0.1 47.240.1)
1% 44.6+0.2 44.440.6 44.1+0.4 44.6+0.1 45.84+0.1 45.0+0.1 147.14+0.1 I
0.05% 46.1+4.4 53.1+2.5 46.6+2.3 40.91+0.5 88.24+0.2 88.4+4+0.4 : 88.0+1.8 :
Reddit 0.1% 58.0+2.2 62.7+1.0 53.0+3.3 42.840.8 89.54+0.1 89.340.1 ‘89.6:|:0.7 93.94+0.0
0.2% 66.3+1.9 71.0+1.6 58.5+2.1 47.44+0.9 90.5+1.2 88.8+0.4 90.1+0.5 /

—-d‘-Q—/




Condensed graphs are concise and can
capture original graph properties.

( Clteseer r=0, 9%} Cora, r=13% |Ogbn-arxiv, r=0. 25%| Flickr, r=0.5% |I Reddit, 7=0.1%
: Whole GCOND | Whole GCOND Whole GCoND | Whole GConD! Whole GCoOND

Accuracy | 70.7 70.5 : 81.5 79.8 71.4 63.2 1 47.1 47.1 | 9%4.1 89.4

Homophily 0.74 065 , 081 0.79 0.65 0.07 1 0.33 028 | 0.78 0.04

Storage |47.1MB 0.9 MB ,14 9MB 04 MB 100.4 MB 03MB 86.8MB 0.5MB j435.5MB 0.4 MB
e e e e ™ et r g

‘——————

[
!
!
!
!
!
!

(a) Cora, r=2.5% \(b) Citeseer, r=1. 8%l (c) Arxiv, 7=0.05% (d) Flickr, 7=0.1% 2 (e) Reddit, r=0.1%

_____________ 19




Condensed graphs can be used to
well-train different GNN architectures.

-— oy

Methods Data ~ MLP GAT APPNP Cheby GCN SAGE SGC : Avg. : g‘; i‘:sl:t
Citeseor  DCOmaph X/ 662 - 66.4 649 662 659 69.6 | 66.6 |
o, GCoxpx X' 69.6 - 69.7  70.6 697 69.2 716 1 7021 .. o
: GCono A’,X’ 639 554 69.6 683 70.5 66.2 70.3 1 69.0 =
1
Sorn DC-Graph X'  67.2 - 67.1  67.7 67.9 662 72.8 , 68.3 :
L —oa, GCoxpx X' 760 - 770 741 753 760 761 | T5.7 | g1 5104
"  GCown  A',X' 731 662 785 760 80.1 782 793, 784 =
Oubnaniy DCOrph X' 599 - 60.0 557 59.8 60.0 60.4 ! 59.2 1
e hy  GCoxpx X' 641 - 61.5 595 642 644 64.7 | 6291 »1 4101
=0U%9%  Gcono A/,X’ 622 600 63.4 549 632 62.6 63.7 1 61.6 I
1 I
_— DC-Graph X’  43.1 - 45.7 438 459 458 45.6 | 454
oy GConpx X' 421 - 44.6 423 450 447 444 | 442 | 472401
=9°%  Geonp  A/,X’ 448 401 459  42.8 47.1 462 46.1 | 456
Reddit DC-Graph X’  50.3 - 81.2 775 89.5 897 90.5 ! 8571
. ole, GConpx X' 401 - 787 740 89.3 89.3  91.0 : 84.5 | 93.940.0
= L GConp A/, X’ 425 602 878 755 89.4 89.1 89.6 ! 86.3 |
g \V H/ ;

GCN performance

20

[1] A Unified View of Graph Neural Networks on Graph Signal Denoising (Ma et al, 2021)



Condensed graphs can be used for Neural
Architecture Search.

Random Herding '\GCOND|

Cora 0.40 021 ' 076
Citeseer 0.56 0.29 | 0.79 !
Ogbn-arxiv 0.63 0.6 L 0.64 !

Pearson correlation between condensed graph and original
graph validation accuracies of 480 GNN models.

21
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Graph-less Neural Networks

Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah
ICLR 2022



Challenges in scaling GNNs

e Realtime inference is slower than traditional models

ICan we deploy GNNSs in real-time inference settings
:W|thout latency overheads?



Context: (Tabular) Real-time inference

Client

1
I
I
I
I
1
1
I
ast Prediction : ‘
I
I
1
I
I
I
1
I

IR Features Feature
service store

 Latency-constrained applications
« Feature data too large for a single machine
* MLPs are a workhorse of most such modern systems

24



Context: (Graph) Real-time inference

Client

est  Predi¢ction Node/edge
features

Inference
service

Feature
store

Requ

Topology

« Large graphs, with high average-degree, in practice
* Requires many queries to facilitate message passing

25



GNNs are way slower than MLPs...

led

—— MLP
1 —— GraphSAGE I

33006.40

Inference Time (ms)
= = N N w
o u o ul o

o
&)

o
o

# Layers

* Infer 10 randomly selected nodes (graph of 2.5M nodes)
* Inference time = fetching data + forward pass

26



..but also way more accurate!

Datasets lGraphSAGE | MLP
Cora 180.52 + 1.77: 59.22 £ 1.31
Citeseer 170.33 + 1.971 59.61 + 2.88
Pubmed 175.39 £ 2.09 ! 67.55 £ 2.31
A-computer 18297 £2.16, 67.80 £ 1.06
A-photo 190.90 +0.84! 78.77 £ 1.74
Arxiv 170.92 = 0.17 ' 56.05 4 0.46
Products \78 61 £ 0. 49; 62.47 £+ 0.10

Node classification accuracy on seven benchmarks.

27



GNN and MLP: Combining Advantages

Accurate GNN: Fast MLP:
* Graph dependence in training \ * No graph dependence in training
* Graph dependence in inference * No graph dependence in inference



Proposal: Graph-less Neural Networks (GLNNs)

Offline Training with Distillation

Trained
GNN
) | Teacher

Onlbe O
O O

Features

Soft Targets

Distilled
Knowledge

Online Prediction on New Nodes ™

New node/edgesin
dashed lines===***

No dependency on| Deployed

graph in grey

 Offline training: use graph to train GNN; distill to MLP

 Online prediction: faster, more accurate graph-less inference

for new nodes




Proposal: Graph-less Neural Networks (GLNNs)

1. Train a (teacher) GNN, and produce logits for each node z,.

2. Train a (student) GLNN using the below loss.

L = )\quevL Elabel (Q’U) yv) + (1 — A)Zvevcteacher (gva z’u)

Encourage MLP to correctly Encourage MLP/GNN logit
predict labeled nodes from logits consistency for all nodes

30



Trade-offs Between Speed and Accuracy

105 Y (ideal)
80 -
’g . 33006.4 ® \CEL3
£ 104 GLNNwS8 )
[ )
E 757 "GLNNw4 SAGE-L2
103 ; >
Q
S § 70 -
8 -}
g 102 E GLNN
o 17.2 65 | .
S 101 SAGE-L1
wn ]
o 5.09 All MLPs
60 -
- 100 ] 2.34 Y (ideal)
1 2 3 4 161 1I02 1()3 1I04

# Layers Log Scale Inference Time (ms)

*  MLPs/GLNNSs are much faster than GNNs ®* GLNN is much more accurate than MLP

* This holds even with wider MLPs/GLNNs * GLNNs are comparably accurate to
GNNs while being much faster

31



GLNNs empower MLPs to be like GNNs.

bbbl == ======= 4

Datasets Eval SAGE MLP/MLP+  GLNN/GLNN+{ Aypp M Agnw :
Cora prod  79.29 58.98 78.28 i 19.30 (32.72%) il -1.01 (-1.28%) -
ind  8133+2.19 59.094+296 73824193 | 14.73(2493%)u -7.51(-9.23%) 1

tran 7878 +£192 5895+ 1.66 79.39+ 1.64 | 2044 (34.66%) § 0-61 (0.77%) !

Citeseer prod  68.38 59.81 69.27 I 9.46 (15.82%) 4 0.89 (1.30%) -
ind  69.75+3.59  60.06 4500 69.25+2.25 | 9.19 (15.30%) i =05 (-07%) |

tran  68.04 £334 5975+248 69.28+3.12 1 9.63 (15.93%) 124 (1.82%)

Pubmed prod  74.88 66.80 74.71 : 7.91 (11.83%) N -0.17 (-0.22%) |
ind 7526 +2.57 66.85+2.96 7430+2.61  7.45(11.83%) § -0.96 (-1.27%) :

tran 7478 +£222 6679 +£290 7481 +239 1 8.02(12.01%) y 0.03(0.04%) |

il 1

A-computer prod 82.14 67.38 82.29 1 14.90 (22.12%) 0 0.15 (0.19%) I
ind 82084179 6784+ 178 80924136 1 13.08(19.28%) % -1.16 (-1.41%) -

tran 8215+ 155 67274136 82634140 ! 1536(22.79%) I 0.48 (0.58%) 1

i 1

A-photo prod  91.08 79.25 92.38 | 13.13 (16.57%) M 130 (142%)
ind 9150+ 079 7944+ 172 9118+ 0.81 1 11.74 (14.78%) y -0.32(-0.35%)

ran  90.80 £0.77 7920+ 1.64 92.68 £ 0.56 | 13.48 (17.01%) " 170 (1.87%) |

Arxiv prod  70.73 55.30 65.09 | 979 (17.70%) B -5.64(-7.97%) |
ind 7064 +0.67 5540+£0.56 6048046 1 43(7.76%) g -10.94 (-1549%)

tran  70.75+027 5528049 7146+033  11.16(20.18%) 1 -4.31(-6.09%) |

Products prod  76.60 63.72 75.77 I 12.05 (18.91%) Il -0.83 (-1.09%) -
ind 7689 £053 63704066 75.16+0.34 1 11.44(17.96%) i -1.73 (-2.25%) |

tran  76.53 £0.55 63.73+£0.69 75924+ 061 | 12.20(19.15%) :: -0.61 (-0.79%) |

} 3

Significant accuracy

improvement over
MLPs.

Competitive accuracy
to GNNs on 6/7
datasets.

32



GLNNSs are much faster than other inference
acceleration methods.

Datasets SAGE QSAGE PSAGE Neighbor Sample  GLNN+

Arxiv 489.49 43390 (1.13x)  465.43 (1.05x)  91.03 (5.37%) 3.34 (146.55x)
Products 2071.30 1946.49 (1.06x) 2001.46 (1.04x) 107.71 (19.23x)  7.56 (273.98x%)

Inference time for 10 randomly chosen nodes.

* SAGE: base GNN model

e QSAGE: Quantized SAGE, FP32 to INT8

* PSAGE: Pruned SAGE, with 50% model parameters pruned
* Neighbor Sampling: sampling 15 nodes per layer

33



GNN KD helps regularize MLP training.

------- MLP train —— MLP valid GLNN train GLNN valid
2.5 2.5 2.5 2.51 2.5
2.0 2.0 2.0 2.01 2.0
1.5\ 15 7 T~ 15 1.5 1.5
1.0—"-.__‘ 1.01 10T~ 10] \w_____ww_ 1.05&/
0.5{ ° 0.5 0.5] . \o. 05{ = 0.5] 1 V=
o {0 L PP PETLLLLELLELLET 0.0 " - : 0.0 ‘ ‘ "'---7 ............ 0 Terreian
Cora Citeseer Pubmed A-Computers A-Photo
KD helps MLPs match inductive bias of GNNs. Datasets SAGE MLP GLNN
T % Cora 0.9347 0.7026 0.8852
— TT(Y AY) Citeseer 0.9485 0.7693 0.9339
— Lot € [0,1]
o Tr(YTDY) cut ; Pubmed 0.9605 0.9455 0.9701
A-computer 0.9003 0.6976 0.8638
measures consistency between model prediction (Y) and A-photo 0.8664 0.7069  0.8398
graph topology (A : adjacency matrix, D : degree matrix) Average 10.9221  0.7644  0.8986

34



GLNNs aren’t pertfect.

GLNNSs suffer when labels are less-correlated to node
features (e.g. more correlated to structural aspects).

Add Gaussian noise to node features

X — (1—a)X + ae As the correlation between labels and node
90- features decreases...
80| —— MLP-ind « GNN degrades more gracefully by

—— GNN-ind

GLNN-ind using graph structure information

50 « GLNN gets less accurate.

NB: In practical tasks, the node features and
structural roles are often highly correlated.

00 02 04 06 08 1.0
Noise Level a 35



Concluding remarks



Takeaways O

Scalable large-scale graph learning with GNNs is hard!

Our recent work in condensation and distillation pushes
boundaries in scalable training and inference.

The work is never done; Snap is hiring!

E-mail me at nshah@snap.com if you want to work together!

{} Snap Inc.




