Scaling up Graph Neural Networks at Snap

Neil Shah

August 15, 2022

DLG-KDD 2022

Our Brands

Snapchat

Snapchat is a new kind of camera used by millions of people every day to stay in touch with friends, express themselves, explore the world — and take some pictures, too.

Spectacles

Spectacles are sunglasses that capture your world, the way you see it — and empower you to share your perspective with the world in a whole new way.

Why Snap?

Bitmoji

Bitmoji is the digital you — a living cartoon character to instantly express who you are and how you're feeling, in the moment.

319 million

daily active users (DAUs) use Snapchat every day on average.¹

Over 6 billion

AR Lens plays per day on average.¹

Over 200 million

DAUs engage with augmented reality every day on average.¹

Over 250,000

Lens creators have used Lens Studio.²

Over 2.5 million

Lenses made by our community.²

Over 75%

of the 13-34 year olds in the US, UK, Australia, France, and Netherlands use Snapchat.¹

The Snapchat Experience

Five core platforms

February 2022 Investor Presentation (investor.snap.com)

Graph Neural Networks

$G(\mathcal{G}) \rightarrow \square$

Figure credit: Lingxiao Zhao

Graph Neural Networks

• Key idea: stack message passing layers to learn node and / or graph embeddings

Graph Neural Network (1 layer)

• (t-th) Message Passing Layer

Relations to other approaches

Multi-layer perceptrons (tabular machine learning)

Relations to other approaches

Challenges in scaling GNNs

- Storing very large graphs is non-trivial
- Models are slow to train due to data dependency
- Realtime inference is slower than traditional models

. . .

Graph Condensation for GNNs

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah ICLR 2022

Followup: Condensing Graphs via One-Step Gradient Descent (Jin et al, KDD'22) Thursday, August 18, 10:00 AM-12:00 PM, Room 206, (Graph Mining)

Challenges in scaling GNNs

- Storing very large graphs is non-trivial
- Models are slow to train due to data dependency
- Realtime inference is slower than traditional models

Can we significantly speed up GNN training by making large graph data smaller?

Our problem: Graph Condensation

Given graph $\mathcal{T} = (\mathbf{A}, \mathbf{X}, \mathbf{Y})$, we aim to learn a graph $\mathcal{S} = (\mathbf{A}', \mathbf{X}', \mathbf{Y}')$ with fewer nodes such that a GNN trained on \mathcal{S} can achieve comparable performance to one trained on \mathcal{T} .

$$\min_{\mathcal{S}} \mathcal{L} \left(\text{GNN}_{\boldsymbol{\theta}_{\mathcal{S}}}(\mathbf{A}, \mathbf{X}), \mathbf{Y} \right)$$

Minimize loss on original graph

s.t $\theta_{\mathcal{S}} = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}(\operatorname{GNN}_{\theta}(\mathbf{A}', \mathbf{X}'), \mathbf{Y}')$

via learned parameters on condensed graph

Our problem: Graph Condensation

Given graph $\mathcal{T} = (\mathbf{A}, \mathbf{X}, \mathbf{Y})$, we aim to learn a graph $\mathcal{S} = (\mathbf{A}', \mathbf{X}', \mathbf{Y}')$ with fewer nodes such that a GNN trained on \mathcal{S} can achieve comparable performance to one trained on \mathcal{T} .

Proposal: Graph Condensation via Gradient Matching

- Directly optimizing the bi-level problem is hard!
- Instead, try to learn \mathcal{S} , such that $\theta^{\mathcal{S}} pprox \theta^{\mathcal{T}}$

Proposal: Graph Condensation via Gradient Matching

How to best parameterize S? Details in the paper! $D(\cdot, \cdot)$

Training with condensed graphs is comparable to training on their original counterparts.

		Baselines				Prop	osed	`	
Dataset	Ratio (r)	$\begin{array}{c} \text{Random} \\ (\mathbf{A}',\mathbf{X}') \end{array}$	Herding $(\mathbf{A}', \mathbf{X}')$	$\begin{matrix} \text{K-Center} \\ (\mathbf{A}',\mathbf{X}') \end{matrix}$	Coarsening $(\mathbf{A}', \mathbf{X}')$	DC -Graph (\mathbf{X}')	GCond-x (X')	$\begin{array}{c} \textbf{GCOND} \\ \textbf{(A', X')} \end{array}$	Whole Dataset
Citeseer	0.9% 1.8% 3.6%	54.4 ± 4.4 64.2 ± 1.7 69.1 ± 0.1	57.1 ± 1.5 66.7 ± 1.0 69.0 ± 0.1	$52.4{\pm}2.8$ $64.3{\pm}1.0$ $69.1{\pm}0.1$	52.2 ± 0.4 59.0 ± 0.5 65.3 ± 0.5	66.8 ± 1.5 66.9 ± 0.9 66.3 ± 1.5	71.4 ± 0.8 69.8 ± 1.1 69.4 ± 1.4	70.5 ± 1.2 70.6 \pm 0.9 69.8 ± 1.4	$71.7{\pm}0.1$
Cora	1.3% 2.6% 5.2%	$63.6 {\pm} 3.7$ $72.8 {\pm} 1.1$ $76.8 {\pm} 0.1$	67.0 ± 1.3 73.4 ± 1.0 76.8 ± 0.1	64.0 ± 2.3 73.2 ± 1.2 76.7 ± 0.1	$31.2 \pm 0.2 \\ 65.2 \pm 0.6 \\ 70.6 \pm 0.1$	67.3 ± 1.9 67.6 ± 3.5 67.7 ± 2.2	$75.9 {\pm} 1.2$ $75.7 {\pm} 0.9$ $76.0 {\pm} 0.9$	79.8 ±1.3 80.1 ±0.6 79.3 ±0.3	81.2 ± 0.2
Ogbn-arxiv	0.05% 0.25% 0.5%	$47.1 \pm 3.9 \\ 57.3 \pm 1.1 \\ 60.0 \pm 0.9$	$52.4{\pm}1.8$ $58.6{\pm}1.2$ $60.4{\pm}0.8$	47.2 ± 3.0 56.8 ± 0.8 60.3 ± 0.4	$35.4{\pm}0.3\ 43.5{\pm}0.2\ 50.4{\pm}0.1$	58.6 ± 0.4 59.9 ± 0.3 59.5 ± 0.3	61.3 ± 0.5 64.2 ± 0.4 63.1 ± 0.5	59.2 ± 1.1 63.2 ± 0.3 64.0 ± 0.4	$71.4 {\pm} 0.1$
Flickr	0.1% 0.5% 1%	$41.8\pm 2.0\ 44.0\pm 0.4\ 44.6\pm 0.2$	42.5 ± 1.8 43.9 ± 0.9 44.4 ± 0.6	42.0 ± 0.7 43.2 ± 0.1 44.1 ± 0.4	$41.9 {\pm} 0.2 \\ 44.5 {\pm} 0.1 \\ 44.6 {\pm} 0.1$	$46.3 {\pm} 0.2 \\ 45.9 {\pm} 0.1 \\ 45.8 {\pm} 0.1$	$45.9 {\pm} 0.1 \\ 45.0 {\pm} 0.2 \\ 45.0 {\pm} 0.1$	46 .5 \pm 0.4 47 .1 \pm 0.1 47 .1 \pm 0.1	$47.2{\pm}0.1$
Reddit	0.05% 0.1% 0.2%	46.1 ± 4.4 58.0 ± 2.2 66.3 ± 1.9	53.1 ± 2.5 62.7 ± 1.0 71.0 ± 1.6	46.6 ± 2.3 53.0 ± 3.3 58.5 ± 2.1	40.9 ± 0.5 42.8 ± 0.8 47.4 ± 0.9	88.2 ± 0.2 89.5 ± 0.1 90.5 ± 1.2	$88.4{\pm}0.4$ $89.3{\pm}0.1$ $88.8{\pm}0.4$	88.0 ± 1.8 89.6 ±0.7 90.1±0.5	$93.9{\pm}0.0$

Condensed graphs are concise and can capture original graph properties.

		、					<u> </u>			
	Citesee	er, r=0.9%	Cora,	r=1.3%	Ogbn-a	rxiv , <i>r</i> =0.25%	Flickr,	r=0.5%	Reddit,	r=0.1%
·	Whole	GCOND	Whole	GCOND	Whole	GCOND	Whole	GCOND	Whole	GCOND
Accuracy	70.7	70.5	81.5	79.8	71.4	63.2	47.1	47.1	94.1	89.4
Homophily	0.74	0.65	0.81	0.79	0.65	0.07	0.33	0.28	0.78	0.04
Storage	47.1 MB	0.9 MB	14.9 MB	0.4 MB	100.4 MB	0.3 MB	86.8 MB	0.5 MB	435.5 MB	0.4 MB

Condensed graphs can be used to well-train different GNN architectures.

	Methods	Data	MLP	GAT	APPNP	Cheby	GCN	SAGE	SGC	Avg.	Whole Dataset
Citeseer $r = 1.8\%$	DC-Graph GCond-x GCond	$egin{array}{c} \mathbf{X}' \ \mathbf{X}' \ \mathbf{A}', \mathbf{X}' \end{array}$	$ \begin{array}{r} 66.2 \\ 69.6 \\ 63.9 \end{array} $	- - 55.4	$ \begin{array}{r} 66.4 \\ 69.7 \\ 69.6 \end{array} $	$64.9 \\ 70.6 \\ 68.3$	$66.2 \\ 69.7 \\ 70.5$		$69.6 \\ 71.6 \\ 70.3$	$\begin{array}{c} 66.6 \\ 70.2 \\ 69.0 \end{array}$	71.7±0.1
Cora $r = 2.6\%$	DC-Graph GCond-x GCond	$egin{array}{c} \mathbf{X}' \ \mathbf{X}' \ \mathbf{A}', \mathbf{X}' \end{array}$	$67.2 \\ 76.0 \\ 73.1$	- 66.2	$67.1 \\ 77.0 \\ 78.5$	$67.7 \\ 74.1 \\ 76.0$	$67.9 \\ 75.3 \\ 80.1$	$66.2 \\ 76.0 \\ 78.2$	$72.8 \\ 76.1 \\ 79.3$	$68.3 \\ 75.7 \\ 78.4$	 81.2±0.2
Ogbn-arxiv $r = 0.25\%$	DC-Graph GCond-x GCond	$egin{array}{c} \mathbf{X}' \ \mathbf{X}' \ \mathbf{A}', \mathbf{X}' \end{array}$	$59.9 \\ 64.1 \\ 62.2$	- 60.0	$\begin{array}{c} 60.0 \\ 61.5 \\ 63.4 \end{array}$	$55.7 \\ 59.5 \\ 54.9$	$59.8 \\ 64.2 \\ 63.2$	$\begin{array}{c} 60.0 \\ 64.4 \\ 62.6 \end{array}$	$\begin{array}{c} 60.4 \\ 64.7 \\ 63.7 \end{array}$	$59.2 \\ 62.9 \\ 61.6$	71.4 ± 0.1
Flickr $r = 0.5\%$	DC-Graph GCond-x GCond	$egin{array}{c} \mathbf{X}' \ \mathbf{X}' \ \mathbf{A}', \mathbf{X}' \end{array}$	$\begin{array}{c} 43.1 \\ 42.1 \\ 44.8 \end{array}$	- 40.1	$45.7 \\ 44.6 \\ 45.9$	$\begin{array}{c} 43.8 \\ 42.3 \\ 42.8 \end{array}$	$45.9 \\ 45.0 \\ 47.1$	$45.8 \\ 44.7 \\ 46.2$	$\begin{array}{c} 45.6 \\ 44.4 \\ 46.1 \end{array}$	$\begin{array}{c} 45.4 \\ 44.2 \\ 45.6 \end{array}$	47.2 ± 0.1
Reddit $r = 0.1\%$	DC-Graph GCond-x GCond	$egin{array}{c} \mathbf{X}' \ \mathbf{X}' \ \mathbf{A}', \mathbf{X}' \end{array}$	$50.3 \\ 40.1 \\ 42.5$	- 60.2	81.2 78.7 87.8	$77.5 \\ 74.0 \\ 75.5$	$89.5 \\ 89.3 \\ 89.4$	$89.7 \\ 89.3 \\ 89.1$	$90.5 \\ 91.0 \\ 89.6$	$85.7 \\ 84.5 \\ 86.3$	93.9 ± 0.0

GCN performance

[1] A Unified View of Graph Neural Networks on Graph Signal Denoising (Ma et al, 2021)

Condensed graphs can be used for Neural Architecture Search.

	Random	Herding	GCOND
Cora	0.40	0.21	0.76
Citeseer	0.56	0.29	0.79
Ogbn-arxiv	0.63	0.6	0.64

Pearson correlation between condensed graph and original graph validation accuracies of 480 GNN models.

Graph-less Neural Networks

Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah ICLR 2022

Challenges in scaling GNNs

- Storing very large graphs is non-trivial
- Models are slow to train due to data dependency
- Realtime inference is slower than traditional models

Can we deploy GNNs in real-time inference settings without latency overheads?

Context: (Tabular) Real-time inference

- Latency-constrained applications
- Feature data too large for a single machine
- MLPs are a workhorse of most such modern systems

Context: (Graph) Real-time inference

- Large graphs, with high average-degree, in practice
- Requires many queries to facilitate message passing

GNNs are way slower than MLPs...

- Infer 10 randomly selected nodes (graph of 2.5M nodes)
- Inference time = **fetching data** + forward pass

...but also way more accurate!

	<pre>/</pre>	
Datasets	GraphSAGE	MLP
Cora	80.52 ± 1.77	59.22 ± 1.31
Citeseer	70.33 ± 1.97	59.61 ± 2.88
Pubmed	75.39 ± 2.09	67.55 ± 2.31
A-computer	82.97 ± 2.16	67.80 ± 1.06
A-photo	90.90 ± 0.84	78.77 ± 1.74
Arxiv	70.92 ± 0.17	56.05 ± 0.46
Products	78.61 ± 0.49	62.47 ± 0.10

Node classification accuracy on seven benchmarks.

GNN and MLP: Combining Advantages

Accurate GNN:

- Graph dependence in training
- Graph dependence in inference

Fast MLP:

- No graph dependence in training
- No graph dependence in inference

Can we use graph dependency in training, but not inference?

Proposal: Graph-less Neural Networks (GLNNs)

- Offline training: use graph to train GNN; distill to MLP
- Online prediction: faster, more accurate graph-less inference for new nodes

Proposal: Graph-less Neural Networks (GLNNs)

- 1. Train a (teacher) GNN, and produce logits for each node z_v .
- 2. Train a (student) GLNN using the below loss.

 $\mathcal{L} = \lambda \Sigma_{v \in \mathcal{V}^L} \mathcal{L}_{label}(\hat{\boldsymbol{y}}_v, \boldsymbol{y}_v) + (1 - \lambda) \Sigma_{v \in \mathcal{V}} \mathcal{L}_{teacher}(\hat{\boldsymbol{y}}_v, \boldsymbol{z}_v)$

Encourage MLP to correctly predict labeled nodes from logits

Encourage MLP/GNN logit consistency for all nodes

Trade-offs Between Speed and Accuracy

- MLPs/GLNNs are much faster than GNNs
- This holds even with wider MLPs/GLNNs
- GLNN is much more accurate than MLP
- GLNNs are comparably accurate to GNNs while being much faster

GLNNs empower MLPs to be like GNNs.

Datasets	Eval	SAGE	MLP/MLP+	GLNN/GLNN+	Δ_{MLP}	Δ_{GNN}
Cora	prod ind tran	79.29 81.33 ± 2.19 78.78 ± 1.92	$58.9859.09 \pm 2.9658.95 \pm 1.66$	$78.28 \\ 73.82 \pm 1.93 \\ 79.39 \pm 1.64$	19.30 (32.72%) 14.73 (24.93%) 20.44 (34.66%)	-1.01 (-1.28%) -7.51 (-9.23%) 0.61 (0.77%)
Citeseer	prod ind tran	$\begin{array}{c} 68.38 \\ 69.75 \pm 3.59 \\ 68.04 \pm 3.34 \end{array}$	$59.81 \\ 60.06 \pm 5.00 \\ 59.75 \pm 2.48$	69.27 69.25 ± 2.25 69.28 ± 3.12	9.46 (15.82%) 9.19 (15.30%) 9.63 (15.93%)	0.89 (1.30%) -0.5 (-0.7%) 1.24 (1.82%)
Pubmed	prod ind tran	74.88 75.26 ± 2.57 74.78 ± 2.22	$\begin{array}{c} 66.80 \\ 66.85 \pm 2.96 \\ 66.79 \pm 2.90 \end{array}$	$74.71 74.30 \pm 2.61 74.81 \pm 2.39$	7.91 (11.83%) 7.45 (11.83%) 8.02 (12.01%)	-0.17 (-0.22%) -0.96 (-1.27%) 0.03 (0.04%)
A-computer	prod ind tran	$\begin{array}{c} 82.14 \\ 82.08 \pm 1.79 \\ 82.15 \pm 1.55 \end{array}$	$\begin{array}{c} 67.38 \\ 67.84 \pm 1.78 \\ 67.27 \pm 1.36 \end{array}$	82.29 80.92 ± 1.36 82.63 ± 1.40	14.90 (22.12%) 13.08 (19.28%) 15.36 (22.79%)	0.15 (0.19%) -1.16 (-1.41%) 0.48 (0.58%)
A-photo	prod ind tran	$\begin{array}{c} 91.08 \\ 91.50 \pm 0.79 \\ 90.80 \pm 0.77 \end{array}$	$79.2579.44 \pm 1.7279.20 \pm 1.64$	$92.3891.18 \pm 0.8192.68 \pm 0.56$	13.13 (16.57%) 11.74 (14.78%) 13.48 (17.01%)	1.30 (1.42%) -0.32 (-0.35%) 1.70 (1.87%)
Arxiv	prod ind tran	$\begin{array}{c} \textbf{70.73} \\ \textbf{70.64} \pm \textbf{0.67} \\ \textbf{70.75} \pm \textbf{0.27} \end{array}$	$55.30 \\ 55.40 \pm 0.56 \\ 55.28 \pm 0.49$	$\begin{array}{c} 65.09 \\ 60.48 \pm 0.46 \\ 71.46 \pm 0.33 \end{array}$	9.79 (17.70%) 4.3 (7.76%) 11.16 (20.18%)	-5.64 (-7.97%) -10.94 (-15.49% -4.31 (-6.09%)
Products	prod ind tran	76.60 76.89 ± 0.53 76.53 ±0.55	$\begin{array}{c} 63.72 \\ 63.70 \pm 0.66 \\ 63.73 \pm 0.69 \end{array}$	$75.7775.16 \pm 0.3475.92 \pm 0.61$	12.05 (18.91%) 11.44 (17.96%) 12.20 (19.15%)	-0.83 (-1.09%) -1.73 (-2.25%) -0.61 (-0.79%)

Significant accuracy improvement over MLPs.

Competitive accuracy to GNNs on 6/7 datasets.

GLNNs are much faster than other inference acceleration methods.

Datasets	SAGE	QSAGE	PSAGE	Neighbor Sample	GLNN+
Arxiv	489.49	433.90 (1.13×)	465.43 (1.05×)	91.03 (5.37×)	3.34 (146.55×)
Products	2071.30	1946.49 (1.06×)	2001.46 (1.04×)	107.71 (19.23×)	7.56 (273.98×)

Inference time for 10 randomly chosen nodes.

- **SAGE:** base GNN model
- **OSAGE:** Quantized SAGE, FP32 to INT8
- **PSAGE:** Pruned SAGE, with 50% model parameters pruned
- Neighbor Sampling: sampling 15 nodes per layer

GNN KD helps regularize MLP training.

KD helps MLPs match inductive bias of GNNs.

$$\mathcal{L}_{cut} = \frac{Tr(\hat{\boldsymbol{Y}}^T \boldsymbol{A} \hat{\boldsymbol{Y}})}{Tr(\hat{\boldsymbol{Y}}^T \boldsymbol{D} \hat{\boldsymbol{Y}})} \quad \mathcal{L}_{cut} \in [0, 1]$$

measures consistency between model prediction (\hat{Y}) and graph topology (A: adjacency matrix, D: degree matrix)

Datasets	SAGE	MLP	GLNN
Cora	0.9347	0.7026	0.8852
Citeseer	0.9485	0.7693	0.9339
Pubmed	0.9605	0.9455	0.9701
A-computer	0.9003	0.6976	0.8638
A-photo	0.8664	0.7069	0.8398
Average	0.9221	0.7644	0.8986

GLNNs aren't perfect.

GLNNs suffer when labels are less-correlated to node features (e.g. more correlated to structural aspects).

Add Gaussian noise to node features

As the correlation between labels and node features decreases...

- GNN degrades more gracefully by using graph structure information
- GLNN gets less accurate.

NB: In practical tasks, the node features and structural roles are often highly correlated.

Concluding remarks

Takeaways

- Scalable large-scale graph learning with GNNs is hard!
- Our recent work in condensation and distillation pushes boundaries in scalable training and inference.
- The work is never done; **Snap is hiring**!
- E-mail me at <u>nshah@snap.com</u> if you want to work together!

