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Friendships

Chatting

Story viewing

Snapping

Publisher 
content

Games

Lenses

Hundreds of millions of nodes, and billions of edges.

Graphs are everywhere at Snap
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Graph Neural Networks

Figure credit: Lingxiao Zhao
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● Key idea: stack message passing layers to learn node and / 
or graph embeddings

Graph Neural Networks

Figure credit: Lingxiao Zhao
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● (t-th) Message Passing Layer  

Node emb. Neighbor embs.Pooling

Graph Neural Network (1 layer)

Figure credit: Lingxiao Zhao



Relations to other approaches

Multi-layer perceptrons
(tabular machine learning)
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Graph ML contextTabular ML context



Relations to other approaches

Convolutional neural networks
(computer vision)

Transformers
(natural language processing) 
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Challenges in scaling GNNs
• Storing very large graphs is non-trivial

• Models are slow to train due to data dependency

• Realtime inference is slower than traditional models

…
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Today: how can we scale up GNN training & inference?



Graph Condensation for GNNs
Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah
ICLR 2022
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Followup: Condensing Graphs via One-Step Gradient Descent (Jin et al, KDD’22)
Thursday, August 18, 10:00 AM-12:00 PM, Room 206, (Graph Mining)



Challenges in scaling GNNs
• Storing very large graphs is non-trivial

• Models are slow to train due to data dependency

• Realtime inference is slower than traditional models

…
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Can we significantly speed up GNN training by making 
large graph data smaller?



Our problem: Graph Condensation
Given graph ! = ($, &, '), we aim to learn a graph  ) =
($!, &!, '′) with fewer nodes such that a GNN trained on ) can 
achieve comparable performance to one trained on !.
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via learned parameters on condensed graph

Minimize loss on original graph



Our problem: Graph Condensation
Given graph ! = ($, &, '), we aim to learn a graph  ) =
($!, &!, '′) with fewer nodes such that a GNN trained on ) can 
achieve comparable performance to one trained on !.
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Proposal: Graph Condensation via 
Gradient Matching
• Directly optimizing the bi-level problem is hard!
• Instead, try to learn    , such that

• We convert the problem to matching gradients[1]:
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Params from condensed graph Params from original graph

[1] Dataset Condensation with Gradient Matching (Zhao et al, 2021)

Gradients from condensed graph Gradients from original graph
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How to best parameterize !? Details in the paper!

Proposal: Graph Condensation via 
Gradient Matching
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Training with condensed graphs is comparable 
to training on their original counterparts.
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Condensed graphs are concise and can 
capture original graph properties.
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Condensed graphs can be used to 
well-train different GNN architectures.

GCN performance

[1] A Unified View of Graph Neural Networks on Graph Signal Denoising (Ma et al, 2021)
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Condensed graphs can be used for Neural 
Architecture Search. 

Pearson correlation between condensed graph and original 
graph validation accuracies of 480 GNN models.



Graph-less Neural Networks
Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah
ICLR 2022
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• Storing very large graphs is non-trivial

• Models are slow to train due to data dependency

• Realtime inference is slower than traditional models

…

Challenges in scaling GNNs
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Can we deploy GNNs in real-time inference settings 
without latency overheads?
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Context: (Tabular) Real-time inference

• Latency-constrained applications
• Feature data too large for a single machine
• MLPs are a workhorse of most such modern systems

Client

Inference 
service

Feature 
store

Request

Features

Prediction
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Context: (Graph) Real-time inference

• Large graphs, with high average-degree, in practice
• Requires many queries to facilitate message passing

Client

Inference 
service

Feature 
store

Graph 
store

Request

Topology

Node/edge 
features

Prediction
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GNNs are way slower than MLPs…

• Infer 10 randomly selected nodes (graph of 2.5M nodes)
• Inference time = fetching data + forward pass

GNN: Exponential in # layers

MLP: Linear in # layers
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…but also way more accurate!

Node classification accuracy on seven benchmarks.
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GNN and MLP: Combining Advantages

Can we use graph dependency in training, but not inference?

Accurate GNN:

• Graph dependence in training

• Graph dependence in inference

Fast MLP:

• No graph dependence in training

• No graph dependence in inference
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Proposal: Graph-less Neural Networks (GLNNs)

Offline Training with Distillation Online Prediction on New Nodes

Only Node
Features

Trained
GNN

Teacher

Distilled 
Knowledge

Soft Targets

Deploy

No dependency on 
graph in grey

New node/edges in 
dashed lines

MLP
Student

Deployed
GLNN

• Offline training: use graph to train GNN; distill to MLP

• Online prediction: faster, more accurate graph-less inference 
for new nodes
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Proposal: Graph-less Neural Networks (GLNNs)

1. Train a (teacher) GNN, and produce logits for each node +".

2. Train a (student) GLNN using the below loss.

Encourage MLP/GNN logit 
consistency for all nodes

Encourage MLP to correctly 
predict labeled nodes from logits
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Trade-offs Between Speed and Accuracy

(ideal)

• MLPs/GLNNs are much faster than GNNs

• This holds even with wider MLPs/GLNNs

• GLNN is much more accurate than MLP

• GLNNs are comparably accurate to 
GNNs while being much faster

(ideal)
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GLNNs empower MLPs to be like GNNs.

Competitive accuracy 
to GNNs on 6/7 
datasets.

Significant accuracy 
improvement over 
MLPs.
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GLNNs are much faster than other inference 
acceleration methods.

• SAGE: base GNN model
• QSAGE: Quantized SAGE, FP32 to INT8
• PSAGE: Pruned SAGE, with 50% model parameters pruned

• Neighbor Sampling: sampling 15 nodes per layer

Inference time for 10 randomly chosen nodes.
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GNN KD helps regularize MLP training.

KD helps MLPs match inductive bias of GNNs.

measures consistency between model prediction (    ) and
graph topology (    : adjacency matrix,     : degree matrix)
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GLNNs aren’t perfect.
GLNNs suffer when labels are less-correlated to node 
features (e.g. more correlated to structural aspects).

As the correlation between labels and node 
features decreases…

• GNN degrades more gracefully by 
using graph structure information

• GLNN gets less accurate. 

NB: In practical tasks, the node features and 
structural roles are often highly correlated.

Add Gaussian noise to node features



Concluding remarks
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Takeaways
• Scalable large-scale graph learning with GNNs is hard!

• Our recent work in condensation and distillation pushes 
boundaries in scalable training and inference.

• The work is never done; Snap is hiring!

• E-mail me at nshah@snap.com if you want to work together!


